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Abstract—Modern microprocessors and SoC-based accelerator
modules make common use of integer, floating-point, and ma-
trix multiplication operations within standard workloads. The
emergence and dominance of Al systems in the market has
placed a unique weight on matrix multiplication. All of these
operations are rooted in integer multiplication, requiring blazing-
fast hardware units to support gigahertz-speed pipelines and
high-bandwidth multiply-accumulate operations. Combinational
multipliers, in particular, require unique tricks in order to
improve measurable metrics: compressor trees like the Wallace
or Dadda; High-Speed final adders like the Kogge-Stone, Brent-
Kung, and Han-Carlson; and encoding schemes such as Booth
encoding. Tradeoffs in these designs must be evaluated when
designing for speed, for area, or for power, and middle-grounds
must be found when multiple metrics are desired.

This work presents the design process and layout for a Wallace
Tree-based combinational 8-bit multiplier. The design targets
layout area as its parameter for minimization, undertaking a
number of optimizations such as use of inverting logic, trans-
mission gate-based cell design, and standard-cell-style layout in
order to maximize performance and density.

Index Terms—VLSI, Cadence, Multiplier, Wallace Tree, Brent-
Kung, GPDK045, Standard Cell Library, Multiply-Accumulate
(MACQ).

I. INTRODUCTION

NTEGER multiplication is a core operation across micro-

processors, application-specific integrated circuits, and ac-
celerators for Digital Signal Processing, Al Compute Acceler-
ation, or other general-purpose matrix computation hardware.
Whether integer, fixed-point, or floating-point in scope, any
multiplier circuit has an integer multiplication at its core.

Multipliers come in both sequential and combinational fla-
vors. For ultra-highspeed purposes, these two approaches are
often melded to enable fast, dense, pipelined multiplication.
Even so, the core multiplication algorithm remains the same,
drawn from the combinational multiplier architecture:

1) Calculate Partial Products
2) Compress Partial Products
3) Final Addition (If needed)

These steps are drawn specifically from a tree multiplier
approach, where the N2 partial products are compressed down
with a tree of half-adders (2-to-2 compressors) and full-adders
(3-to-2 compressors). The two most common approaches are
the Wallace Tree [1] and the Dadda Tree [2], which compress
the set of partial products in different ways. The request for
this project was to use a Wallace Tree, so we avoided the
Dadda approach, even though it saves area in some cases.
These trees both leave a final set of bit pairs, typically
handled by some form of fast adder. The best adders in this

realm include Carry-Select [3], Carry-Skip, Carry-Save, Brent-
Kung [4], Kogge-Stone [5], and Carry-Lookahead. All designs
take varying approaches to producing the carry-in for a given
bit faster than the simple ripple-carry approach.

II. DESIGN
A. Partial Product Generator

The partial product generator takes the two input vectors
and computes the bitwise product of each pair of bits, akin to
how one would compute each single-digit product when per-
forming longhand decimal multiplication. This bitwise product
is performed using an AND gate for each of the N? pairs.
The partial product generator also arranges these bits in a
convenient way for the Wallace Tree to process them, much
like how each row is staggered when performing longhand
decimal multiplication with numbers larger than one digit.

B. Wallace Tree Partial Product Compressor

The partial product generator outputs 64 bits that must be
shifted and added to create the resulting product. Although a
series of 8 adders could accomplish this, such an approach
requires and excess of power and area compared to other pos-
sible strategies. Instead, the partial products can be combined
in a bit-wise manner to reduce the number of partial products.
This allows for a smaller, 10-bit adder to sum the remaining
products.

The Wallace Tree consists of 5 layers of full adders (FAs)
and half adders (HAs). Each FA and HA adds two or three
bits with the same place value, producing a sum bit with the
same place value and a carry bit of one higher place value.
This process is visualized in Figure 6.

C. 10-Bit Brent-Kung Parallel-Prefix Adder

For the final adder, the Wallace Tree yields 10 bit-pairs to
perform an addition operation on. This adder has a restricted
set of input pairs such that it will never produce a carry-out
from the MSB, allowing the 9th bit to have reduced hardware
complexity.

Design investigation began with a Ripple-Carry Adder, as
it is the maximally dense hardware for the addition operation.
The worst-case time for the ideal schematic was found to be
around 1000ps, which was beyond acceptable limits as the
layout parasitics would threaten to bring the design above the
given 3ns latency requirement. Thus, investigation moved onto
the family of Parallel-Prefix Adders (PPAs), a faster approach.
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Serious consideration was given to the Kogge-Stone and
Brent-Kung adders, with some thought also given to Han-
Carlson and Ladner-Fischer approaches, which are less well-
documented. Parallel prefix adders focus on the architecture
used to generate the complete carry-in signals for each full
adder, typically via a tree structure.

Cells common to these trees are the Black Cell and Gray
Cell, colored accordingly in the below diagrams. These are
universal terms across the design of mathematical circuits,
combining propagate and generate terms from adjacent ranges
to encode a broader span of information.

Kogge-Stone adders require substantial duplicate hardware
as they target high-speed prefix calculation, as seen in Fig-
ure 1. The circuit area is large relative to other approaches
due to having 34 Black cells and 15 Gray cells for a 16-bit
implementation. The excess of cells results in tree compres-
sion down to a 4-stage critical path, producing a very-high-
performance adder.
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Fig. 1: The Parallel-Prefix Calculation for a Kogge-Stone
Adder. Generated using IamFlea’s AdderCircuitGenerator on
GitHub.

Brent-Kung Adders are far less performance-focused, in-
stead opting to decrease circuit footprint, as highlighted by
Figure 2. This makes them an attractive option for an area-
optimized multiplier. With only 11 Black Cells and 15 Gray
Cells for a 16-bit implementation, the computation has up to
7 stages, compromising on speed. The BKA was the PPA
explored first due to these attractive qualities.
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Fig. 2: The Parallel-Prefix Calculation for a Brent-Kung Adder.

The BKA was observed to have a worst case delay of

277ns without parasitics, making it sufficiently fast to meet
the project requirement, even once nonidealities were added
post-layout. Thus, the Kogge-Stone Adder was not explored
further. The 10-bit adder schematic was connected as seen in
Figure 3, with square symbols representing black and gray
cells.

Fig. 3: Cadence Virtuoso Schematic for a 10-bit Brent-Kung
Adder

D. Custom GPDKO045-Based Standard Cell Library

The GPDK-045 technology node was provided as the target
node for the project. Capacitors, NMOS transistors, and PMOS
transistors were provided, but constructing standard cells from
which to build modules was left as a requisite stepping-stone
for making progress on the multiplier.

Our implementation opted for minimum-sized transistors, a
45nm gate length on this node. Although delay for a refer-
ence inverter is not equalized with this approach, causing an
unoptimal delay, striving towards the minimum area target and
an expectation of some breathing room on timing constraints
meant minimum-sizing would be a worthy tradeoff.

Standard cells made included an inverter, nand2, nor2, and2,
or2, a transmission gate, xor, xnor, aoi2x1, oai2x1, a half-
adder, a full-adder, a gray cell, and a black cell. Most of
these cells have very typical CMOS implementations that are
dense, fast, and straightforward, but some are less clear-cut.
For the non-inverting gates, AND and OR, an inverting gate
was paired with an inverter.

The XOR and XNOR gates presented a unique design
challenge: traditional CMOS XOR gates use 12 transistors for
a 2-input logic function. As the design heavily emphasizes half
and full adders, XOR gates are a large portion of any critical
path. Thus, their implementation must carefully considered for
a successful multiplier design. Through research into works
such as [6], [7], and wiki resources, an 8T Transmission-
Gate XOR approach was found. This approach uses 4 fewer
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transistors in the main body of the cell, which decreases the
area due to less overhead for spacing gate contacts. The 8T
version also presents with faster transitions in all 16 transition
cases except the 11—01 case (not the worst case delay), with a
lower average delay by almost 30ns. Its schematic is displayed
in Figure 4.
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Fig. 4: Schematic for a Transmission-Gate XOR

The full adder is another complex gate to design, and many
approaches have been documented [6] [7]. Our sum logic used
a standard XOR-XOR approach with transmission gates, but
our carry logic is nonstandard. The AB + AC + BC majority
logic term can be re-expressed more efficiently when the A @
B = X term already is present in the circuit from the sum
calculation. This rearrangement results in CX + AX for the
carry-out, or alternatively C X + BX, noting that A and B are
equal in the case that X = 1.

Using this logic results in a design as seen in Figure 5.
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Fig. 5: Schematic for a Transmission-Gate Full Adder

E. Layout

A similar motivation dominated the choices made regarding
layout to decisions for architecture and transistor sizing: as
minimum area was the ultimate goal of the design, NMOS
and PMOS transistors were put as close together as possible
for the reference inverter, and the power rails were packed
a minimal possible distance as well. This resulted in a cell
height of 0.8um with transistors in a vertical-gate orientation.
This measurement constituted the row height when stacking
cells together.

Our area goal also provoked a preference for going up rather
than out when dealing with crossing or adjacent wires. Thus,
we iterated and arrived at the following system:
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Fig. 6: Algorithm for a 16-bit Wallace Tree. Blue and green
outputs correspond to HA sum and carry out bits respectively.
Red and purple outputs correspond to FA sum and carry out
bits.

e Poly, Metal 1, Metal 2: Used for laying out primitives
(NOT, NAND, NOR, TX, AOI, OAI) and other routing
when convenient for higher-level cells.

o Metal 3: Used for internal routing in more complex cells
(XOR, XNOR, Gray Cell, Black Cell) and other higher-
level routing when convenient.

e Metal 4: Used for internal routing in the most complex
cells (HA, FA) and at the module level.

o Metal 5, Metal 6: Used for Vertical and Horizontal global
routing, respectively.

The understanding was that this approach would constitute
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a performance penalty due to contact and via resistances and
capacitances. The design density would also make necessary
small, high-resistance wires, further decreasing performance,
but still minimizing area.

With rigorous, robust cell design, and learned heuristics, i.e.
keeping wires a minimum of % the PDK’s minimum spacing
from cell borders, layout was made far easier than a haphazard
approach.

III. OPTIMIZATIONS

The multiplier design we chose includes 110 XOR gates
and an additional pseudo-XOR included in each of the 38
full-adders. Thus, most of the effort put towards optimizing
the design revolved around these gates, or towards global
optimizations.

The first optimization occurred in the design phase, when
the internal X signal of the FA’s sum computation was able
to be reused for the carry logic’s TG enables. This saved an
external inverter on the full adder, reducing its size from 22T
to 20T.

There exist a class of pass transistor-based 4T-XOR and
4T-XNOR designs [6], and these were implemented within
the standard cell design as an attempt to save even more
area. However, their reliance on pass transistors make them
slow under certain conditions, and they have issues with weak
pull-up to V4g using NMOS. Additionally, under capacitive
load, select transitions were seen to be in the realm of 550ps,
invalidating them as a candidate. A variation that used a 4T
XNOR with an inverter on the output was also explored, but
failed to produce a significant speedup, even with only a single
inverter loading the pass transistor.

One observation made was the number of inverters con-
tained within cells. Standard half-adders use AND gates for
carry logic, requiring an inverter. Gray cells and black cells
used and-or trees, comprised of an AOI and an inverter [8]. The
partial product generator was entirely built of AND gates. Cre-
ating an alternating tree structure in the Wallace Tree, the par-
allel prefix tree, and constructing the partial product generator
to produce inverted outputs using NAND cells could greatly re-
duce the area. Thus, we designed half-adder, full-adder, black
cell, and gray cell variants for Positive-Input/Negative-Output
and Negative-Input/Positive-Output combinations. These ad-
ditional cells were instrumental in saving ~150 inverters
(~71.4 um?) within the design. In no case did the inverter
count increase for an individual cell, as the XOR and XNOR
designs are of the same size and could be swapped. At the
module level, a few spots required re-addition of the previously
removed inverter to preserve polarity, but the change still
resulted in large overall savings.

Many other optimizations were considered but not pursued
either due to project scope constraints or due to meager
benefits yielded from substantial effort. For the Wallace tree,
4-to-2 and larger compressors were investigated as a way to
shrink the tree size. However, a 4-to-2 compressor requires
2 FAs, negating any significant benefits. Additionally, 4-to-
2 compressors introduce a layer of complexity that com-
plicates the addition of more beneficial optimizations. Low-
Voltage-Threshold transistors were considered as a potential

improvement for pass transistor designs, but lacking time, an
uncertainty surrounding layout specifics of LVT models in the
GPDKUO045 technology node, and focus on other optimizations
prevented exploration of this unique approach. Lastly, we
found gate-input optimization unnecessary, as each individual
structure proved fast enough to abstain from further path/cell-
to-cell optimization for the design.

IV. ENERGY-LATENCY-AREA ANALYSIS

A breakdown of these metrics for standard cells can be
found in section A. As for the higher-level modules, the
following was extracted from our work:

Cell ‘ Area (um?) ‘ Delay ‘ Energy
Partials 44.672 29 ps 10£J
Wallace Tree 328.96 1.24 ns | 170
Final Adder 74.035 694ps | 59.391]
Top-Level 407.108 1.76ns | 4791]

This design is within the given target metrics given of 3ns
maximum delay and 1000fJ of power draw. The worst input
vector occurs when bit 4 of input A is high and bit 3 of input
B rises. Increasing the total number of transitions increases the
energy consumption. Therefore, the worst-case input vector is
10 00 — FF FF. In this case, a propagation delay of 1.76 ns
is observed, and the design consumes 478.566 fJ.

Due to substantial optimizations and deft design, the layout
of the multiplier has an area of 407 um?. When compared
with a non-inverting version, the updated inverting schematic
consumed less power on top of proving faster and lower area.

V. CONCLUSIONS

This project served as both a great success and a fantastic
learning experience. To wrap up simply: The design worked
and hit substantially below the required metrics. With a worst-
case latency of 1.76ns and an energy usage of 479f], the
design uses between 45% and 60% of the delay and power
budget available to it. With such margins available between
the requirements and results, there is yet more redesign that
could be undertaken to continue to shrink the area footprint
of the design further.

We are particularly curious regarding how the low-voltage
transistors would affect the pass-transistor XOR operation.
More delay would be acceptable for an area reduction, as
there are ~ 1.25ns to sacrifice in exchange for lower cell area.
Additionally, there is likely a layout density improvement we
could find, as shown by the fully integrated multiplier having
small holes in it. We estimate the design area could be reduced
by 5-10% by exploiting these regions for better compression
of the standard cells. Lastly, we may be able to use this extra
timing delay to revert to a simpler adder, such as a ripple-carry
or a simple carry-select.

We are proud of our efforts, achievements, and the payoff
of the complicated decisions we spent time mulling over.
We’d like to thank Professor Sumeet Gupta for his excellent
instruction of a compelling, well-designed VLSI course.
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VI. CONTRIBUTIONS

Aidan Prendergast focused his efforts primarily on the adder
design, standard-cell design, layout rule construction, and
topological optimization of cells and inverters. This included
construction of a SystemVerilog model of the Brent-Kung
Adder to verify its functionality, comparison of Ripple-Carry
and Brent-Kung adders in Spectre simulation, Standard Cell
schematics and layout, Standard Cell re-layout to optimize
cell interconnectability, half-adder and full-adder design, and
additional design of inverting variants of cells.

Malcolm McClymont focused primarily on the schematics
and layout of the high-level modules, especially the partial
product generator and Wallace Tree. Both modules were
modeled and their connectivity verified in SystemVerilog.
He also worked on the bring-up of NanoTime scripts and
evaluation tooling for Static Timing Analysis and Worst-Case
Input Vector Extraction. He performed the re-schematic of
the Wallace Tree to cut out inverters and laid out the Partial
Product Generator, Wallace Tree, and Top-Level Multiplier.

APPENDIX A
STANDARD CELL METRICS

All cells occupy one 0.8um-tall row, including power and
ground rails. Metrics were calculated from cell schematic
sizing and worst-case input vector computation. Cells with
more than one entry correspond to different variants, such as
the Negative-to-Positive and Positive-to-Negative half adder
layouts.

Cell Area(s) (um?) | Worst Delay (ps)
NOT 0.476 12
NAND2 0.64 19
NOR2 0.64 25
TG 0.584 6
AND2 1.116 25
OR2 1.116 33
AOI 0.82 37
OAI 1.012 35
XOR 2.12 29
XNOR 2.12 29
Gray 0.82, 1.012 37
Black 1.46, 1.652 37
HA 2.76, 3.236 29
FA 5.408 62

APPENDIX B

STANDARD CELL LAYOUTS

The following are imagery detailing the layouts used for
each of the designs required for the Wallace Tree Multiplier.
Much larger designs, from the full-adder to the top-level, are
exhibited on subsequent, auxiliary pages.

NAND Gate NOR Gate

AOI Gate OAI Gate

XNOR Gate
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Half-Adder Module

APPENDIX C
PROOF OF FUNCTIONALITY

The images presented in Figure 11 and Figure 12 are the
Design Rule Check and Layout-Versus-Schematic (including
Electrical Rules Check and Extraction Steps) results, proving
the Wallace Tree design follows the Layout and Connectivity
requirements set forth by the GPDKO045 Technology Node and
Schematic Design of the module.
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Fig. 11: Design Rule Check Results for the Full Multiplier
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Fig. 12: Layout-Versus-Schematic Results for the Full Multi-
plier
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Fully-Integrated Wallace Tree Multiplier
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Wallace Tree Multiplier Functionality Verification
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