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The Necessity of Watermarking
Malicious Users of LLM Capability in 2023
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▪ Machine-Driven content generation has never 
been faster, more accessible, or easier

▪ Syllabi are now addressing Large Language 
Model use and cheating

▪ Generic, generated-content websites are 
beginning to crop up across a variety of 
disciplines

▪ Social media bots are becoming more capable, 
and sound more human than ever

▪ To begin to combat the issue, we must be able 
to accurately discriminate human text from 
machine-generated text



The Watermarking Pipeline
How Watermarked Text is Output from a Typical LLM
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• LLM Objective: Token Prediction

• LLM Softmax Output

• Distribution Manipulation

• Token Selection from Watermark Output

Distribution Transformation



Watermarking Engine and Watermark Detection
Invisible Statistical Manipulation at High Confidence
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Watermark Application Watermark Detection



Attacking the Watermark

▪ Attack Success: Z-Threshold = 4

▪ Copy-Paste: Z-score = 9.04

▪ Dilution: Z-score = 7.24

▪ Replacement: Z-score = 7.00

▪ Rephrasing: Z-score = 4.41

▪ ChatGPT could not remove the watermark 
by rephrasing the text.

▪ Even human subjects in the Kirchenbauer et 
al. follow-up paper could not remove the 
watermark through rephrasing.

Robustness and Common Use-case Evaluation
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▪ Attack Types:

▪ Copy-Paste (No Attack)

▪ Embed Into Text (Dilution)

▪ Replacement - Variation of generated 

text to mask watermark

▪ Rephrasing/Summary Attack

▪ Feeding text to GPT-3.5

Full attack outputs can be found in 

Appendix D of my paper.



Enhanced Watermark Tracking: Sliding Window 
Detection

▪ Dilution-style attacks, in large magnitude, are 
rather effective and likely attack vectors

▪ One paragraph in an essay

▪ One blurb in a news article

▪ One generated tweet in a large set of tweets

▪ These attacks would be rather easy to spot if we 
could identify the “hotspot” in the diluted text

▪ The detector just takes the whole text at once

▪ Binary all-or-none is generated approach

▪ The Sliding-Window Detector:
▪ Takes multiple passes over the input text

▪ Looks for the largest offending subset of text

▪ Particularly small sets may have high variance 
due to small sampling size bias, so a minimum 
set size (20) is passed to the detector.

My Contribution to the Watermarking Codebase
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Thank You
Aidan Prendergast
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