
Watermarking of Large
Language Models

11/20/23

Aidan Prendergast

The Necessity of Watermarking
Malicious Users of LLM Capability in 2023

11/20/23 ‹1›

▪ Machine-Driven content generation has never
been faster, more accessible, or easier

▪ Syllabi are now addressing Large Language
Model use and cheating

▪ Generic, generated-content websites are
beginning to crop up across a variety of
disciplines

▪ Social media bots are becoming more capable,
and sound more human than ever

▪ To begin to combat the issue, we must be able
to accurately discriminate human text from
machine-generated text

The Watermarking Pipeline
How Watermarked Text is Output from a Typical LLM

11/20/23 ‹2›

• LLM Objective: Token Prediction

• LLM Softmax Output

• Distribution Manipulation

• Token Selection from Watermark Output

Distribution Transformation

Watermarking Engine and Watermark Detection
Invisible Statistical Manipulation at High Confidence

11/20/23 ‹3›

Watermark Application Watermark Detection

Attacking the Watermark

▪ Attack Success: Z-Threshold = 4

▪ Copy-Paste: Z-score = 9.04

▪ Dilution: Z-score = 7.24

▪ Replacement: Z-score = 7.00

▪ Rephrasing: Z-score = 4.41

▪ ChatGPT could not remove the watermark
by rephrasing the text.

▪ Even human subjects in the Kirchenbauer et
al. follow-up paper could not remove the
watermark through rephrasing.

Robustness and Common Use-case Evaluation

11/20/23 ‹4›

▪ Attack Types:

▪ Copy-Paste (No Attack)

▪ Embed Into Text (Dilution)

▪ Replacement - Variation of generated

text to mask watermark

▪ Rephrasing/Summary Attack

▪ Feeding text to GPT-3.5

Full attack outputs can be found in

Appendix D of my paper.

Enhanced Watermark Tracking: Sliding Window
Detection

▪ Dilution-style attacks, in large magnitude, are
rather effective and likely attack vectors

▪ One paragraph in an essay

▪ One blurb in a news article

▪ One generated tweet in a large set of tweets

▪ These attacks would be rather easy to spot if we
could identify the “hotspot” in the diluted text

▪ The detector just takes the whole text at once

▪ Binary all-or-none is generated approach

▪ The Sliding-Window Detector:
▪ Takes multiple passes over the input text

▪ Looks for the largest offending subset of text

▪ Particularly small sets may have high variance
due to small sampling size bias, so a minimum
set size (20) is passed to the detector.

My Contribution to the Watermarking Codebase

11/20/23 ‹5›

Thank You
Aidan Prendergast

	Slide 1: Watermarking of Large Language Models
	Slide 2: The Necessity of Watermarking
	Slide 3: The Watermarking Pipeline
	Slide 4: Watermarking Engine and Watermark Detection
	Slide 5: Attacking the Watermark
	Slide 6: Enhanced Watermark Tracking: Sliding Window Detection
	Slide 7: Thank You

